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Abstract. The semiclassical propagator for the one-dimensional anharmonic oscillator is 
investigated, in the configuration space, by means of the so-called Van Vleck formula, 
which expresses it as a sum over all the denumerably infinite classical paths conneciing 
given points in the same time. Analytical formulae for the paths’ contributions are given, 
together with some numerical results. It is shown that in the general case the amplitudes 
of the canvibutions asymptotically approach the same value, while the phases oscillate; 
the Van Vleck series therefore does not converge, but in the generic case it can be resummed. 
Finally, the conditions under which one of the paths gives a dominant contribution to the 
semiclassical propagator are discussed. 

1. Introduction 

As is well known, in the semiclassical approximation the Feynman’s path integral [l] 
for the propagator reduces to a sum [2,3], to which all the classical paths, going from 
the initial point x, to the final point xB in the same time T, contribute. 

In the generic case, there are many classical trajectories, with different energies, 
connecting the given points in time T, so that it is interesting to investigate how the 
different paths take part in the quantum amplitude in this approximation, their contribu- 
tions being in general different: in fact, the weight of the contribution is related to the 
number of neighbouring paths which constructively interfere, and this number is a 
priori different for the various extremals of the action. 

The aim of this paper is to present the results of such an investigation for the 
one-dimensional anharmonic oscillator, for which a quartic term is added to the 
harmonic potential in the Lagrangian. Due to its intrinsic interest and being one of 
the simplest nonlinear systems, the anharmonic oscillator was and still is an active 
field of research, in particular for what pertains to the relationship between classical 
and quantum mechanics [4-81. For our purposes, it is the simplest system with 
denumerably infinite classical paths connecting given points x,, and xB in time T, while 
for the corresponding unperturbed system, the harmonic oscillator, there is in  general 
only one such path. 

Various aspects of the problem which we are interested in are discussed in 121 and 
[9], where the validity of the usual perturbative expansion is particularly investigated. 
In the present paper we give the explicit analytical expressions for the classical paths’ 
contributions to the semiclassical propagator as a function of the coordinates and time; 
the actual calculation needs the numerical determination of the paths energy, and an 
example of this computation is presented in the last part of the paper. Moreover, from 
the analytical results it follows that in general the various classical trajectories, which 
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may be labelled by some integer n, contribute with amplitudes which asymptotically 
approach the same value, with increasing n; in this way the series for the semiclassical 
propagator does not converge, but it is shown that in general it can be Cesaro resummed. 
Finally, it is shown that two countable sequences of times correspond to any choice 
of x,, and x,, in such a way that the amplitude of one of the related paths diverges, 
so that the relative contribution t o  the total propagator has predominant importance 
with respect to the others. 

The paper is organized in the following manner: in section 2 the analytical results 
are given, while section 3 is devoted to the presentation of the numerical results, 
together with the investigation of the asymptotic behaviour and the divergences in the 
amplitude. 

2. Analytical results 

According to the so-called Van Vleck formula [3, IO], the semiclassical approximation 
KWKs for the propagator K(x,, f,; xA, fa) is given, in the one-dimensional case, by 

here S, is the action for the a t h  classical path from the initial point x, at time f A  to 
the final point xB at time f,, i.e. 

and n, is the number of focal points along the path (see helow for details). The 
one-dimensional anharmonic quartic oscillator is described by the Lagrangian 

( A > O ) .  (3) L = ' . 2  1 2 2 1 4 
2X -20 X -TAX 

The solutions of the equation of motion are expressed in terms of Jacobi elliptic 
functions (see, for instance, [9]). 

In order to compute KWKB for the Lagrangian (3) we have to find all the classical 
paths which connect the initial and the final points in the time T = t ,  - fa. These are 
determined by specifying their energy E and the directions of the initial and final 
momenta p 1111. In general the paths may be divided into four classes according to 
the signs of the momenta: the first class includes the paths with pa > 0 and ps > 0; for 
the second class pa > 0 and pe < 0, for the third class pa < 0 and ps > 0, and finally for 
the fourth class pa < 0 and ps < 0. For each class, the paths may be labelled by the 
number n of complete oscillations, and their energies E(xA,xB,  T )  are the solutions 
of the equation 

d x  
[2E --w2x2 -$AX4]'/* 

(4) 

where, for each part of a path, the sign has to be chosen according to the sign of dx, 
so that the time f is non-decreasing along the path. 

Let us define 

D ( x ) = [ 2 E  - ~ ' X ~ - ~ A X ~ ] ' ' ~  ( 5 )  
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and 

where K =A,  B and the integration is done on the direct path from the origin 0 to the 
point XK ( t K  should not be confused with f K ) .  f K  is expressed in terms of the elliptic 
integral of first kind F((p, k) [I21 

where 
A = ($A)''2 

R = a'+ b2 

a2 = U'! A+[w4/ A'S 4 E /  A]''' 

b 2 =  - 0 2 / A + [ w 4 / ~ 2 + 4 E / A ] " 2  

r = b / R 1 j 2 .  (14)  
b and - b  are the coordinates of the turning points. i K  as a function of the energy E 
starts from a finite value at E = E,;,, which is the minimum value of the energy such 
that the particle may reach the point x K ,  and monotonically decreases to zero when 
E goes to infinity. The period P ( E )  of the motion, which is given by 

d x  b 

P ( E ) = 4  [ ~ = ( 4 / h ) R - " ~ K ( r )  
J O  u { * l  

where K(r) = F(7r/2,  r )  denotes the complete elliptic integral of the first kind, starts 
from 27r f o at E = 0 and is a monotonic decreasing function, going to zero when E 
tends to infinity. 

For the first class of paths, with the definitions above, ( 4 )  can be written as 

T = f B ( E )  - r A (  E ) +  n P ( E )  ! ! S )  
Given x, and xf l ,  the RHS of (16) is a function of E, starting from a finite value (which 
increases with n) at E = E,,,, and monotonically decreasing to zero; this implies that 
the equation (16) has a unique solution E,(x, ,  xs, T )  for each integer n greater than 
a minimum n,,,. The energy values E, make an increasing unbounded sequence. 
Analogously, for the second class, ( 4 )  becomes 

T = ! f P - t f l ) - r I A + n p = ( n + ? ) P - i " - r "  (17) 

and for the third and fourth class we have, respectively 

T = ( n + f ) P + t s + t a  (18) 
T =  ( n +  1 ) P -  f f l  + fA. (19) 
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For a given energy E, the corresponding action S is computed from the relation 

S(X, ,XB,  T ) =  W ( X A , X B ,  E ) - E T  (20) 
which holds true for every conservative system, where W is given by 

For the anharmonic oscillator 

W = * 1:: D ( x )  dx 

where the sign along the various parts of the trajectory has to be chosen in order to 
obtain W as a non-decreasing [unction aiong the paih. Let us define 

w K  1: D ( x )  dx (23) 

where K =A,  B and the integration is done along the direct path of energy E from 
the origin to xK ; this gives the result [12] 

w K  = A  1:” [ ( a 2 +  x’)(b’ - x’)]’‘~ dx = (A/3)R’12 a 2 F ( y K ,  r )  - (202/A)E ( yK, r )  

+ ( x K / 3 ) ( x ~ + 2 a 2 - b 2 )  [ - s:;:;]”’] 
where E ( y K ,  r )  denotes the elliptic integral of second kind 

E ( p , k ) = ~ * [ l - k ’ ~ i n ’ a ] ~ / ’ d a .  0 ( 2 5 )  

For the first class one obtains 

W =  w B -  w A +  nJ (26) 

where nJ is the contribution to W by the n complete oscillations, and J is the action 
variable 

J ( E ) =  p d~=(4A/3)R”~[a’K(r) - (2w~/A\E(r) ] .  (27) 

E(r) denotes the complete elliptic integral of second kind. In this way, the action for 
the first class of paths is given by 

S = S ( ~ , ,  xB, T )  = nl+ - w A -  ET. (28) 

Analogous expressions for the other classes of paths can be easily obtained. 
in order to compute the ampiitude of ihe path‘s coniribution io iiie s e n i i i . i % ~ ~ i d  

propagator, as given by ( l ) ,  we need the second derivative of the action with respect 
to the initial and final coordinates, i.e. 

f 
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(derivatives will be denoted by means of suffixes). From (28) one has for the first class 
of paths 

(30) S, ,=(nJ,  + w:!- w E  A - T)E,, - w : ~  

and, since JE = P, w t  = t A  and w:! = r e ,  the sum in parentheses in the last equation is 
identically zero with respect to x,, xe and T, due to equation (16). In this way 

SxA,x ,=  w fA ,~Exe .  (31) 

The same result holds for the second class, while for the third and fourth classes the 
sign in the RHS of (31) is positive. From equation (23) it follows that 

wtA.€ = D(xA) - ’  = ( l / A ) [ ( a 2 + x : ) ( b 2 - x a ) ] - ’ / 2  (32) 

and by deriving equation (16) with respect to xs, for the first class one has 

(33) B E,. = - tX& n ~ ,  + r :  - rt]-’ 
where, as follow from equations (6) and (14) [12] 

t f s  = D(xB)- ’  (34) 

I X K  + 
b 2 R [ ( a 2  + x i ) ( b 2  - xi ) ] ’ /2  

with K =A,  B, while PE is easily obtained from ( 1 5 )  as 

(35) 

A5 for the other classes, one has only to change in (33) n into ( n + $ )  for the second 
and third classes and into ( n  f l )  for the fourth class, and to choose the correct signs 
for r:! and r , .  

Finally, in order to compute the paths’ contributions to the semiclassical propagator, 
the number n, of focal points is needed. For a complete discussion of this point see 
[3, 13,141. We will here only recall that a point x,, r ,  along the path x ( t )  leaving x,, 
r, is called focal or conjugate to the initial point if there it results in Sx=O, where 
S x [ x ( f ) ]  denotes the solution of the Jacobi equation, i.e. the infinitesimal deviation 
from the path, with Sx(xA, 1,) = O  but with time derivative different from zero in the 
initial point. The deviation Sx could be obtained as a function.of time, by differentiating 
the solution of the motion’s equation with respect to the integration’s constants. 
However, in order to count the zeros of Sx, it is simpler to use the following approach. 
Let us consider the first class of paths; their equations x = x ( r )  are obtained from 

A 

where t - tA is the total time from xA to the point x, and f x  is the time to go from the 
origin to x along the direct path. By differentiating (37) with respect to x and E we have 
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By putting here E = E,,  one of solutions of (161, and after choosing a value for SE, 
we obtain the’corresponding deviation Sx(x) from the path of energy E, leaving x, at 
time tA. The deviation is parametrized by the corresponding coordinate of the unvaried 
path (i.e. x and Sx in (38) refer to the same time I ) .  The quantities in (38) are given 
by equations (34) to (36), with xK replaced by x. 

By comparing the last equation with equations (31) and (33) one recovers the well 
known result [14] that the Jacobi field Sx is proportional to the inverse of S,,,,,, so 
that in a focal point the second derivative of the action S diverges, together with the 
corresponding path’s contribution to the propagator. The conjugate points are given 
by the zeros of the RHS of (38) and their study is simple, although their exact 
determination can be done, in general, only numerically. At the tuming points b and 
-b  the denominator I:= D(x)- ’  in (38) diverges, but this does not correspond to a 
vanishing Sx, because the divergence is compensated by an analogous divergence of 
the third term in t i ,  as given by ( 3 5 )  with the substitution xK +x. So, the zeros of Sx 
reduce to the zeros of the numerator. 

Let us suppose for simplicity x,=O, l A = O  and xB>O,  and let us follow the 
numerator in (38) while the current point x, moving from the origin, oscillates between 
b and -b. For O<x< b, the numerator reduces to -I:, which is zero at x=O and 
increases monotonically to 00 for x +  b, as seen from the first equality in (35). When 
x decreases from b to 0, the numerator becomes l;-(l/2)PE, which is zero in some 
point xc, because PE <O. For x going from 0 to -b, the numerator is -(1/2)PE - t:, 
which is always greater than zero, while it will pass through zero for x increasing from 
-b  to 0, being there f i  - PE. This analysis immediately can be extended to the other 
oscillations of the current point, and it shows that there it will be a focal point xc 
along each arc of the path corresponding to x decreasing from b to 0 or increasing 
from -6 to 0, while there are no focal points for the other arcs. So, every complete 
oscillation of the path introduces two more focal points. From the above analysis it 
follows that for the first and third classes the number of focal points is equal to 2n or 
2n  i 1, respectively; for the other classes, the last arc of the path, corresponding to x 
decreasing from b to xB, will or will not contain a further focal point, according to 
xB < xc or xB > xc ; this can be only numerically established. Finally, it is easy to show 
that, as the energy increases, the focal points approach the turning points + b ( E )  and 
- b ( E ) .  

3. Numerical results, asymptotic behaviour and discussion 

The results of the previous section have been used for the numerical computation of 
the paths’ contributions to the semiclassical propagator, according to (1 ) .  An example 
of such a computation is given in table 1 ,  where the amplitude and phase of the 
contributions are reported for the first few values of n, together with the corresponding 
energy, with the following choice of parameters: x,=O, xg= 1, T = l ,  o = I ,  A =0.1. 
The energies were obtained by numerically solving equations (16) to (19) and these 
values were then used to compute the amplitude and the phase of the contributions, 
according to the procedure detailed in the previous section. The phases are reduced 
to the interval [-r, r], and we used the value h = 1 for Planck‘s constant. 

For the corresponding unperturbed harmonic oscillator, with the same values of 
parameters x,, xB,  T and U, the (unique) path’s energy is E =0.706 14 and the 
propagator’s amplitude is A = 0.434 90. These values only slightly differ from the 
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Table 1. The energy of the path and the amplitude and the phase of the corresponding 
contribution to the semiclassical propagator are given, for each class, for the first few 
values of the number n of complete oscillations. The parameter values are xA = 0, xB = I ,  
T =  I ,  w = I and A = O . I .  

n Class Energy Amplitude Phase 

0 1 
0 2 
0 3 
0 4 
I 1 
1 2 
1 3 
1 4 
2 i 
2 2 
2 3 
2 4 
3 I 
3 2 
3 3 
3 4 

0.71542 
379.025 04 
502.339 67 

7 190.709 25 
7 682.731 33 

37 450.507 7 
38 557.423 56 

119 519.466 29 

293 102.869 94 
296 177.558 03 
609 250.356 31 
613 677.898 57 

1 130355.924 16 
1 136382.296 IO 

I9 301 157.934 77 

I* .  10-. l*-*c 
L L I * O , . L , , , ,  

0.439 I 9  
0.58801 
0.565 02 
0.569 09 
0.564 28 
0.566 30 
0.564 22 
0.565 36 

0,564 93 
0.564 19 
0.56470 
0.564 19 
0.564 56 
0.564 19 
0.56448 

nrr . *n  "._)a'" 

-2.301 27 
1.63051 
1.93835 

-1.638 77 
-2.387 23 

2.730 05 
2.356 IO 

-0.389 18 

-2.011 28 
2.599 02 

-0.457 28 
2.476 23 

-1.35453 
1.311 23 
1.212 84 

. n*.n. 
,.U'* "1 

corresponding ones for the lowest energy path of the anharmonic oscillator, as seen 
in the first row of table 1. 

As clearly seen from the table, after some initial fluctuation, the amplitude of the 
contributions very quickly stabilizes to a constant value, while the phases irregularly 
oscillate. Moreover, the energy values quickly increase with the number n of complete 
oscillations. This behaviour is also found for a generic choice of the initial and final 
points and of the time T, as easily follows from the analysis of the asymptotic behaviour 
of the various quantities involved. Indeed, for E >> 1, from equations (8) to (15) one has 

so that, as seen from equations (16) to (191, the energy E grows with n as 

E - (Cn/ TI4. (44) 
Moreover, from equations (32) to (36), one has 

w x * , E - t : 8 - ( l / . D ) E - ' / ~  A 

PE --(C/4)E-5t4 

.B I .  I K\ c - 3 / 2  
'g - - , L / v L , L  

so that, for n >> 1, the amplitude A. of the path's contribution to the propagator is 

A,, - (2?rh)-"'E- ' / (2nPE)-  (2?rh)-i'2(2/T)i'2. (48) 
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Thus, in the general case, all the classical trajectories connecting the given points 
in the same time, give, in modulus, an identical asymptotic contribution to the semi- 
classical propagator. This is not trivial because, according to the Feynman’s approach, 
all the paths, including the non-classical ones, equally contribute in modulus to the 
exact propagator; on the other hand the amplitude of the contribution of a classical 
trajectory to the semiclassical propagator is a measure of the number of neighbouring 
constructively interfering paths, and this number is a priori different for the various 
classical trajectories. 

According to the Feynman’s approach [I] ,  the various classical trajectories present 
interfering altematives to a semiclassical particle travelling between the given points 
in time T and the modulus squared of the amplitude gives the probability of the 
alternative; in the generic case all these classical paths therefore are (asymptotically 
for n >> 1, and in practice very soon) equiprobable. 

The last equation (48) also implies that the series for the semiclassical propagator, 
as given by ( I ) ,  does not converge; however, as will be shown, in the general case the 
series can be resummed. According to equation (48), for n >> 1, the contribution of the 
0 t h  classical path to the semiclassical propagator KWKB is given by 

(49) 

(50) 

(2?rfi)-l/2(2/ ~ ) l / 2  e K S . J - n e r / 2 1  

where, according to (28), S, can be written in the form 

s, = ( n + s , ) ~ .  + u f ~ a  - W A -  E,T 

with 8, equal to 0 for the first class of paths, f for the second and the third classes, 
and 1 for the fourth class, and U; is 1 for the first and the third classes, and -1 for 
the second and the fourth classes. In order to investigate the asymptotic behaviour of 
the exponents in (49) we have to evaluate the quantities occurring in (SO) as powers 
of n, up to the order no. For this purpose, equations (16) to (19) for the energies have 
to be solved by searching for solutions in the form 

a n + @ +  y / n .  (51) 

We need also to improve the approximation for P ( E )  as given by (42), and a 
straightforward calculation shows that 

E 114 = 

By inserting (41), (51) and ( 5 2 )  into equations (16) to (19) and by equating coefficients 
of powers of n one easily gets 

C (53) 

therefore, for n >> 1, and by including the zero-order term, the energy E of the path is 
given by a fourth-order polynomial in n 

E = E , n 4 + E , n ’ + E 2 n 2 + E , n + E o .  (54) 

J(E)=~CE”4+DE1/4+O(E-’ /4)  ( 5 5 )  

Moreover, the expansion of J ( E ) ,  as given by (27), for large energies is 

with D = constant, and finally, from our discussion about the focal points, it follows 
that for n >> 1 one can assume that the number n, is given by 

n, = 2 ( n  +Si). (56) 
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By using equations (50) to (53) into (49) it follows that, for large values of n, the 
classical paths with n complete oscillations give the following contributions to the 
semiclassical propagator 

(57) 

where @ ( n )  is a fourth-order polynomial in n, with coefficients depending on T, tA ,  
f”, 6, and mi, as well as on the Lagrangian’s parameters w and A. 

The four series having the general term given in (57), one for each class of paths, 
do  not converge, but are in general Cesaro summable (C, 1). Indeed, a theorem by 
Weyl [15] shows that the terms of the series 

( 2 T h ) - ~ / 2 ( 2 /  T ) ~ / 2  ei /0(o,vB-w*)+2i i i~(n)  

are uniformly distributed on the unit circle of the complex plane, if at least one of the 
coefficients in the polynomial @ ( n )  is irrational. This implies that the partial sums s. 
of the series are 0(1), i.e. o ( n ) ,  so that they fluctuate around their (finite) mean value, 
which is also the limit of the Cesaro means 

( 5 9 )  
s, +. : .+ s. s. = 

n 

The Cesaro summability comes from the cancellation in phase of the contributions, 
and may be lacking in default of cancellation, which can happen only if all the 
coefficients of the polynomial @ ( n )  are rational. The Van Meck series for the semi- 
classical propagator is summable as well: indeed, each term of the latter, as given by 
(49), can be written as the sum of the corresponding term of one of the series given 
in (57) plus a remainder RH,,t, which has the same phase as given by (50), but amplitude 
O(l/n),  as easily seen, so that the remainders’ series are summable, and even conver- 
gent, due to a Hardy’s tauberian theorem for Cesaro summability [16]. A detailed 
comparison between the semiclassical propagator, as computed by resumming its Van 
Vleck series, and its perturbative series will be given elsewhere [17]. 

Finally, let us discuss the resonances, i.e. the divergence of one of the terms in the 
series (1). As we said in section 2, this happens when the final point xs is conjugate 
to the initial point xA with respect to one of the paths, say x , ( t ) .  In this case, a whole 
family of classical paths, infinitely near to x , ( f ) ,  leave xA and again meet in x, after 
time T. All these paths constructively interfere, this giving the divergence of the 
contribution from the path xi to the total propagator. Formally, the divergence is due 
to the second derivative of the action S being infinite at a focal point, which in turn 
signals a breakdown of the approximation underlying (1). According to the discussion 
in section 2, when xA = 0, only for the second or the fourth class the final point x, can 
be conjugate to the initial one. Moreover, it is easy to see that, given xA and xB,  there 
exist two countable sequences of times T. such that the two points are conjugate with 
respect to one of the corresponding paths. In fact, the term ?E as a function of the 
energy starts from -a a E = Emi. and monotonically goes to 0 for E +a; in this way, 
the equation Sx =0, as given by the appropriate modification of (38), has a solution 
E. for each value of the number n of complete oscillations, and the corresponding T. 
is then obtained by inserting E. and n into equations (17) or (19). The first few values 
of E. and T,, obtained in this way, with the choice x A  = 0, x B  = 1, o = 1, A = 0.1, are 
reported in table 2. From the above discussion about the focal points it follows that 
the energy values E, form two sequences converging to Emi,(xs),  and when n increases, 

‘ 
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Table 2. The energy values E. and the corresponding times T. are reponed for the first 
few values of the number n of complete oscillation, for the trajectocies such that the final 
point x. is conjugate to the initial one xA. The parameter values are x, =0, xg = I ,  o = I,  
A = O . I .  

Second class Fourth class 

" E" T" E" r. 
0 2.309 2.284 1.335 5.129 
1 1.024 8.051 0.874 11.007 
2 0.785 13.983 0.727 16.971 
3 0.686 19.967 0.656 22.971 
4 0.634 25.978 0.615 28.990 
5 0.603 32.004 0.593 35.021 
6 0.584 38.039 0.576 41.059 
7 0.575 44.080 0.565 47.102 
8 0.561 50.125 0.557 53.149 
9 0.554 56.173 0.552 59.198 
IO 0.549 62.224 0.547 65.249 

the times T. approach (n++)P(E,,.) and (n+i)P(Emj.) ,  for the second and the fourth 
class, respectively. When the initial and the final points are conjugate to each other 
with respect to a path x , ( t ) ,  the contribution of that path to the total propagator 
dominates the others', and the related probability becomes very large, while for the 
other paths and previous results, corresponding to generic behaviour, still hold. 

In conclusion, there are two possible outcomes for an experience in which one 
records in a point xE the energy and the time-of-flight of semiclassical particles, ejected 
with uniformly distributed energies from a source in x,, and subjected to the anharmonic 
potential of equation (3): in the generic case the particles arriving after time T will 
have practically with the same probability, apart from fluctuations corresponding to 
low values of n, all the energy solutions of equations (16)-(19); otherwise, if time T 
is equal to one of the times T. for which the two points are conjugate with respect tn 
a path x n ( t ) ,  particles will arrive in x E  preferentially with the energy E,, of that path. 
Analogous conclusions obviously hold for any potential such that there are many 
extremals of the action, connecting given points in the same time. An experimental 
verification of this prediction would give a strong confirmation of the validity of 
equation (1). 
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